Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

SIMULATING DEDICATED UNIX PC-BASED APPLICATION SYSTEMS

Boleslaw K. Szymanskit

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180

ABSTRACT

An event-driven simulation model was developed to esti-
mate and balance the hardware resources needed to support
dedicated UNIX PC-based application systems. This paper
describes the simulation approach, the software package de-
veloped, and the tools used to generate the model and collect
data from it. Novel elements of this research include (1) simu-
lation of software that reacts to changes in its external environ-
ment and (2) a methodology for using UNIX tools to estimate
system characterization parameters. Results obtained using the
model were validated by comparing them with data collected
from an actual system.

1. INTRODUCTION
1.1 Why Model a Computer System?

Accurate prediction of a computer system’s performance
provides a means of estimating the computer hardware resources
needed to administer an application software installation. This
task is particularly important for dedicated computer systems, in
which hardware is entirely devoted to servicing one application
and unused capacity cannot be put to other uses. Modeling can
provide the information needed to make cost-effective decisions
about field hardware for initial and future system releases.
When several installations of an application are planned, even
a small cost saving or loss in each installation makes a substan-
tial difference.

There are three major reasons for evaluating system perfor-
mance: (1) for hardware selection evaluation: to make a cost-
effective choice of hardware by establishing the initial system
capacity needed, (2) for performance projection: to evaluate the
effect that system software enhancements will have on a specific
hardware configuration prior to software development, and (3)
for balancing hardware/software resources [Lucas 1975].
Hardware selection evaluation uses system performance in
configuring hardware for the given application. Performance
projection involves estimating the performance of a system that
does not yet exist, in order to estimate the feasibility and
performance of the design. Balancing the hardware configu-
ration involves identifying potential bottlenecks in system per-
formance and removing them through the upgrade of selected
parts of the system [Bard 1975].

1.2 Queuing Network and Simulation Modeling

For the analysis of the application system discussed here, a
queuing network model was used as a first estimate of the hard-
ware requirements of the projected system. In queuing network
modeling, a computer-based system is represented as a network
of queues that are amenable to closed-form solution. Separable
queuing networks were applied; that is, networks in which each
resource can be separated from the network and evaluated in
isolation. Our experience as well as the experience of others
shows that for the best case these models are accurate to within
5 to 10% for system resource utilizations and throughputs and
to within 10 to 30% for response times [Anderson 1984;
Lazowska et al. 1984]. Simulation modeling has been shown to
be adequate in addressing selection evaluation, performance

T Consultant to General Electric Company

Steven H. Azzaro

Engineering Systems Laboratory
GE Corporate Research & Development
Schenectady, New York 12301

projection, and resource balancing [Lucas 1975]. In the past, a
great deal of effort was required to construct a model, and a
great deal of time was also required for its execution. Recent
commercial offerings, however, provide high-level modeling
elements in pictorial format, boosting productivity and enhanc-
ing maintainability. Simulation modeling was used in this
project to enable assessment of maximum system requirements
brought on by bursts of activity, rather than average values,
typically derived from queuing network models.

2. EVENT-DRIVEN SIMULATION MODEL

In order to obtain reliable system performance predictions
in various hardware and software environments, we developed
software for simulating UNIX PC-based application computer
systems. The software package models a CPU, a disk, and I/O
activity. Parameters associated with each hardware device can
be varied, permitting assessment of cost/performance tradeoffs.
The variable parameters are processor speed, memory size, disk
access speed, and latency. The system computational load is
characterized by definition of a set of processes that represent
system utilization. Processes are operated in one of four possible
modes (described in Section 3.2.1, “Mode of Operation”) to
enable precise description of the simulated system behavior.
Characteristics of each process—such as I/O, paging interrupt
frequency, and required CPU time—are specified by the user.

The simulation technique used is event-driven. The simu-
lated computer system is viewed as a collection of processes
that share the same hardware in a multi-programming, virtual
memory environment with a UNIX operating system. The hard-
ware is typical for PC systems and consists of a single CPU and
one or more disk devices. Each process starts its execution by
entering the ready queue of the CPU. A free CPU is allocated
to the process at the head of the ready queue, which runs until
it (1) terminates, (2) times out, (3) needs a page that is not resi-
dent in the memory, or (4) needs to perform an I/O operation.
Each process maintains four event-counters that measure the
elapsed CPU time required for each of these events. The op-
erating system maintains the working set of active processes in
such a way as to equalize their paging ratios. The same disks
are used for I/O operations as for paging.

2.1 Simulation Event Definitions

Five events are defined in our simulation: Request-CPU,
Release-CPU, Request-Disk, Release-Disk, and Terminate. In
the simulation package, each event is associated with a proce-
dure that controls the processing of that event. In an actual
system, the operating system processes events.

2.1.1 Request-CPU

The Request-CPU event procedure first checks the status of
the CPU. If the CPU is not free, the serviced process is placed
at the end of the ready queue. If the CPU is free, the process
acquires the CPU. On the process’s first CPU visit, a new set of
counters is generated; on subsequent visits, the counters are
updated. The smallest counter is selected and subtracted from all
counters. The smallest counter determines the time of the next
event—Release-CPU—for the serviced process.

831

B.K. Szymanski and S.H. Azzaro

2.1.2 Release-CPU

The Release-CPU event is generated by either the Request-
CPU event procedure that found the CPU free or by the Release-
CPU event procedure in the previous call. The Release-CPU
event procedure creates a new event for the serviced process
that is determined by the process’s event counter. If a process
times out—because of the lack of paging or I/O requests—and
no other processes are active at that point, it may release the
CPU and then acquire it again immediately.

The Release-CPU event procedure selects the process at the
head of the ready queue to acquire the CPU. On the process’s
first CPU visit, a new set of counters is generated; on subse-
quent visits, the counters are updated. The smallest counter is
selected and subtracted from all counters. The smallest counter
determines the time of the next event for the serviced process.

2.1.3 Request-Disk

The Request-Disk event procedure first checks the status of
the disk. If the disk is idling, the event procedure causes the
process to be placed at the end of the disk queue. If the queue
is empty and the disk is idling, the event procedure creates a
new event for the serviced process: Release-Disk. (The time of
this event is selected according to the distribution of the Disk
Service Time; see Section 3.1.4 “Average Disk Service Time.”)
Otherwise the serviced process is placed at the end of the disk
queue.

2.14 Release-Disk

The Release-Disk event procedure releases the disk and pro-
duces a new event: Request-CPU. If the disk queue is not
empty, the process at the head of the queue is set to acquire the
disk.

2.1.5 Terminate

The Terminate event causes the process to become dormant
for some period (based on its Mode of Operation, described in
Section 3.2.1) and then generates a Request-CPU event.

2.2 Simulation Execution

As is typical in event-driven simulation, the driving routine
is the scheduler, which maintains the global clock, lists of future
events, and list of existing (active and dormant) processes. The
future event list is ordered by the event times. The scheduler
simply removes the first event (i.e., the event closest to the
global clock in time) from the event list, advances the global
clock to the event time, and then executes the corresponding
event routine. The execution usually produces one or more new
events. The simulation ends when the global clock exceeds the
specified simulation time limit. Execution of each event updates
statistical information gathered about the system (sizes of
queues, utilization of devices, waiting times of processes, etc.).
Although relatively simple, this system allows accurate simula-
tion of complex applications.

2.3 Simulation Tool—The Extend Simulation Environment

Extend [1988] is a simulation tool commercially available
for the Apple-Macintosh environment. It furnishes the basis for
the implementation of the simulation package. This tool pro-
vides many helpful features, including a graphical interface,
graphics for simulation of components and parameters, and a
library of useful functions.

Extend assumes that the system is simulated at equal, dis-
crete intervals. This assumption created a problem because get-
ting an interval small enough to provide accurate results would
introduce many intervals in which nothing happened. The
solution was to define the simulation in terms of states of the
processes of the modeled system. Each state of the system de-
fines an allocation of processes to devices and queues. The
transitions between states are driven by the events defined in

832

Section 2.1, “Simulation Event Definitions.” Thus, the ticks of
Extend’s standard clock were used to represent event count
rather than elapsed time.)

In our simulation, the currently processed event predefines
the time of those future events that are enabled by its occur-
rence. For example, the event Request-Disk (with disk idling)
predefines the time of the event Release-Disk. (Service time de-
termination is discussed in Section 3.4, “Simulating Process
Variability.”) On the other hand, the event Release-Disk forces
the event Request-Disk to occur immediately for the process at
the head of the disk queue, with the predefined time equal to the
current time. The event with a predefined time closest to the
current time is the next one to be processed. The difference
between the current time and the next event predefined time is
a varying simulation-step time elapsing between adjacent clock
ticks. It can vary from 0 to the maximum service time for the
system. This approach allowed us to make effective use of the
Extend package. o]

The typical simulation, shown in Figure 1, is composed of
components that represent the CPU, disk, and processes that
define the application. The monitoring components responsible
for gathering and displaying the results are also shown. The
connections between components represent the information flow
about event time and the process generating the event.

3. THE MODEL

The modeled system is defined by a number of parameters
that characterize its hardware and software components, as
shown in Figure 2.

3.1 Hardware Parameters

The hardware parameters are CPU Relative Speed, Time
Slice, Memory Factor, and Average Disk Service Time.

3.1.1 CPU Relative Speed

The model assumes a 25MHz processor. This parameter can
be modified to investigate the effect of CPU speed on system
performance and balance. Replacing the given CPU with a faster
one increases the total cost of the hardware configuration,
improves the system throughput, and decreases the probability
of process delays due to system overload. At the same time, the
higher paging rate and I/O interrupt frequency increase the load
on the disk, which may not be economically justifiable. In se-
lecting the CPU speed, the main concern is to provide sufficient
processing capacity for the application to run without delays.
The CPU speed can also be used to balance the CPU, memory,
and disk by adjusting the 1/O interrupt frequency to acceptable
levels. Note that the paging rate can be adjusted by selecting the
appropriate memory size.

A rough estimation of the processor speed is the clock speed
expressed in MHz. In PC-based systems, however, the processor
is usually faster than the memory, which creates so-called wait
states in the microprocessor execution. Through appropriate de-
sign, the wait states can be limited. In general, the slower the
processor, the fewer wait states it experiences. The following
formula is used to estimate the effect of the wait state on the
overall processor speed using data collected from an actual
system:

s = prxpfiTu = prxpfl(util«Tm) (1)

In this formula, pr is the average number of instructions exe-
cuted between page faults, pf is the average page fault counter
reported in the monitored period, and Tu is the time during
which the processor was running processes in the monitored pe-
riod, Tm. Tu is equal to the average utilization, uzil, times the
monitored period, Tm. Since pr is independent of the processor
speed (it is a function of the memory size and page replacement
algorithm), for two monitored runs with the same monitoring
period, Tm, the ratio of speed is:

s1/s2 = (pflipf2)*(util2/utill) 2)

Simulating Dedicated Unix PC-Based Application Systems

CPU Info

Pi - Process No. In
Ti - Time In /
Po - Process No. Out |/
To - Time Out ‘
QS - Queue Size
Ut - Utilization

Figure 1. Graphical Representation of Simulation Components in Extend: Each Block Containing
Simulation Code, Data, and User Screen Information; the Two Monitor Icons
Representing Information Plotted on the Screen While the Simulation is in Process

(L ox) (cancer] (temw) [U ok)] (cencer) (neip)

Time Slice (msecs) 1000.00 l
lative S d

Average Service Time 12.50 Re(zaSM:Z Ee]e)

Memory Factor for Paging

Comments Comments

| L i

Note: The most reliable estimate of relative speed
is the ratio of page faults. This measure accounts
for wait state effects.

Number of Processes UMinterval {30000.00
Page Faults [1700

Comments

| adl | a02 | a(

Time Delay 1| 1000000 | 2000.00 | 3009
. - | c01 | c02 | c{

CPU service Time T |__as000 | 7130 | esq
T T01 T T02 T I

10 Blocks 1] 035 | 005 | 0.

R) I mo 1 | mo02 | m
Cancel Min-Run Time T e 1 _oss 1 o
1037 [

Process Type (0-3) LA — I

[o [0 I

Figure 2. Forms Used to Elicit Parameters for Simulating a Specific Configuration: top left—Requests Parameters for
Disk; top right—Requests Parameters for CPU; bottom—Requests Parameters for Each Process

833

B.K. Szymanski and S.H. Azzaro

and pfl, utill and pf2, util2 are reported in system accounting
reports (created by VMSTAT, described in Section 3.2.5,
“Paging”). The measurements of speed are generally inde-
pendent of the executed programs, and therefore can be used as
a convenient yardstick in comparisons of different machine
speeds.

3.1.2 Time Slice

The Time Slice value defines how long processes can run
undisturbed on the CPU. Thus the time slice influences the
turnover rate of the processes and, indirectly, their response
time. Varying this parameter makes it possible to determine,
through simulation, the value of the time slice that optimizes a
particular application.

3.1.3 Memory Factor

The Memory Factor describes the paging rate relative to the
standard memory of 4MB. Since the memory factor is a non-
linear function of the real memory size, it has to be evaluated
by monitored runs on the actual system. To assess the impact of
the memory size change on the paging rate, we need to adjust
the reported number of page faults to the processor utilization.
Thus the paging rate, p, of the process is:

p = pfi(utilxTm) 3)

Note that the UNIX system keeps this rate the same for all
processes running on the machine at any given time. The paging
rates are algorithm- and load-dependent and need to be remea-
sured for each new software system implemented or designed
for the machine.

The memory factor can be varied to estimate the most eco-
nomical memory size. Note that in balanced systems the paging
rate should be close to the I/O freqaency. In a hardware config-
uration in which this match is achieved, an increase in memory
would not be justified since the cost incurred by additional
memory would not provide significant improvement in system
performance.

3.1.4 Average Disk Service Time

Average Disk Service Time has three components: (a) seek
time—time spent moving the read/write head to the appropriate
cylinder on disk, (b) latency time—time spent waiting for the
appropriate part of the disk to rotate under the head, usually
assumed to be half of the full rotation time, and (c) dara
transfer time, which is dependent on the amount of data being
transferred. The seek and latency times can be obtained from the
disk drive technical specifications and are constant for each disk
model. The transfer time can be approximated on the basis of
the average size of the I/O request; therefore, the total disk
service time can be encapsulated in a single parameter for a
given application. The disk service time dictates the acceptable
frequency of the disk requests. Total disk requests are the sum
of I/O accesses and paging interrupts. Normally, the primary
concern in selecting a disk drive is its capacity. However, its
seek time (the largest part of the disk service time) is the most
important factor in assembling a balanced hardware configura-
tion.

3.2 Software Parameters

Parameters for each software process are Mode of Opera-
tion, Time Parameter, CPU Service, I/0 Blocks, Paging, and
Variabiliry.

3.2.1 Mode of Operation

Each process is classified according to its mode of operation
as periodic, open, closed, or dependent.

a. periodic—processes that are invoked cyclically at prede-
fined times. Typical processes in this class are diagnostic or

834

monitoring procedures called at constant intervals.

b. open—processes that execute cyclically at irregular inter-
vals. These processes are called irregularly, independent of the
system load. For example manually invoked maintenance pro-
cesses or service processes (executed in response to customer
requests) belong to this class.

¢. closed—processes that include terminal interactions,
where the user spends some time thinking about the next request
after receiving a response from the computer.

d. dependent—processes that are dispatched with certain
probability at the end of execution of another process (normally
a periodic process). One periodic process can have many depen-
dent processes. This class was introduced so that we could reli-
ably simulate a situation in which a periodic process detects a
problem and dispatches one or more diagnostic processes in re-
sponse.

The difference between the closed class and the others is
important. Processes in the closed class cannot overload the
system, since the start of a new execution waits until the previ-
ous run has terminated. On the other hand, a process from the
periodic, open, or dependent classes may request a new start
before the current execution has terminated. This situation
indicates serious overloading of the system. The simulation
package delays the start of a new periodic or open process and
cancels the request for start of a new dependent process.

The advantage of simulation over queuing network modeling
is its ability to model overloading even though the average load
of the system may not be extraordinarily high. Since the
simulation does not rely on the average values of the system
parameters, it is able to simulate maximum system requirements
brought on by bursts of activity.

3.2.2 Time Parameter

The significance of the Time Parameter is different for each
mode of operation. For a periodic process, this parameter
represents the time between two consecutive process invoca-
tions. For an open process, the time parameter is the average
interval between two consecutive executions of the process. The
distribution of intervals is assumed to be exponential. The
closed process time parameter represents the user thinking time
that elapses between the termination of one execution and the
start of the next one. The thinking time distribution is assumed
to be exponential. For a dependent process, the probability of
being dispatched is represented by the time parameter of the
dispatched process and is obtained by dividing the time parame-
ter of the dispatching process by the time parameter of the
dispatched process. Each time the dispatched process terminates,
it selects a random number between 0 and 1 and compares it to
the probability of dispatching the dependent process. If the se-
lected number is smaller than the probability, the dependent pro-
cess is started.

3.2.3 CPU Service

The CPU Service parameter is the amount of CPU time
required per invocation of the process. It is assumed that the
CPU service time has an exponential-tail distribution, discussed
in Section 3.4, “Simulating Process Variability.”

3.2.4 1/0 Blocks

The 1/O Blocks parameter describes the I/O activities of the
process. It can be evaluated and compared to the I/O block
counts produced by system accounting programs. The I/O block
counts are averaged over all the measured runs of the process in
the report produced by the ACCTCOM program for analyzing
UNIX accounting files. (ACCTCOM was developed at the GE
Research and Development Center by William Davidsen. It pro-
vides I/O activity information not available with vendor-sup-
plied tools.) In the simulation it is assumed that the blocks
read/written in each run are distributed according to the
exponential-tail distribution, discussed in Section 3.4, “Simulat-
ing Process Variability.”

Simulating Dedicated Unix PC-Based Application Systems

3.2.5 Paging

The Paging parameter is taken from the report produced by
the XENIX utility VMSTAT. Since paging activity is kept equal
for all active processes running under the XENIX system, a
single system-wide paging factor is used for the application. The
paging factor defines the frequency of paging interrupts of the
running process, so the value reported by VMSTAT has to be
divided by the CPU utilization in the reported period before it
is entered to the simulation package.

3.2.6 Variability

The Variability parameter reflects the amount of variability
in the processing time and I/O manifested by the process. See
Section 3.4, “Simulating Process Variability.”

3.3 Qutput Parameters

Two parameters define the output results of the simulation
software for each process to be monitored, i.e., the process for
which the maximum response time and average response time
will be displayed in graphs.

3.3.1 Frequency of Output

The Frequency of Output parameter defines the period of
simulated time that must elapse before new data is produced.

3.3.2 Number of Output Points

The Number of Output Points parameter specifies the
number of simulated events desired for a given run. Specifying
this parameter in terms of event count is a small inconvenience
caused by the time variability of the simulation steps. Extend
treats this output parameter as a fixed, total elapsed simulation
time. For the reasons given in Section 2.3, “Simulation
Tool-The Extend Simulation Environment,” we use the ticks of
Extend’s standard clock to represent event counts.

3.4 Simulating Process Variability

Distribution of the random values that characterize software
and hardware is important in building a reliable and trustworthy
model. It is often assumed that I/O requests, page faults, and
processing times are random in character and are well represent-
ed by a Poisson arrival process and that these events have an
exponential distribution. Our experience indicates that these
events behave differently (with smaller variance) than predicted
by the exponential distribution. We attribute the smaller
variance to the operating system activity and the design
characteristics of the application software.

The UNIX operating system buffers //O requests and
empties unfilled buffers only when the periodic “flush” signal
is sent (typically every minute). In addition, software modules
often have regular patterns of requesting 1/O, which vary little
from run to run.

The UNIX operating system attempts to equalize the page
fault tate of all the running processes. Any increased paging ac-
tivity causes an extension of the process working set that results
in a decrease in the paging rate of that process. Thus, the
operating system tends to smooth interpage time distribution.

Processes can be classified as data-independent or data-de-
pendent. Data-independent processes, like monitoring and
reporting, require roughly the same processing times for each
run. Processes in this category tend to generate similar amounts
of I/O activity.

For expert system components, database software, and other
data-dependent processes, both processing time and 1/O activity
are strongly dependent on the problem or query that is being ad-
dressed. The traditional approach to modeling this type of
modified behavior is to use a hyper-exponential or Erlang
distribution [Cohen 1982; Lee 1966] because they can be treated
analytically.

835

It is unrealistic to assume that the processing time of a pro-
gram has a non-zero probability of falling below some small
value, as required by the hyper-exponential and Erlang distribu-
tions. Therefore, in our model, the inter-event time is represent-
ed by an exponential-tail distribution comprising a constant
component and a variable component. The constant component
represents the minimum inter-event time. The variable compo-
nent has an exponential distribution with a mean value equal to
the average event time minus the constant component. The
average inter- event time and its variance can be determined
from the monitoring data. The constant component should then
be selected to match the measured data.

The exponential-tail distribution has the following density

function:
0, if x < mt
f(x) = “4)
oxexp(—aux(x—mt)), otherwise

where o = 1/(at-mt), and at and mt are the average and minimum
inter-event times.

By simple integration it can be established that the average
value in this distribution is ar and the variance is
(at-mt)*(at-mt), which is always less than the variance of the
exponential distribution, (ar*atr). The measured average inter-
event time, at, and its variance, vt, can be computed from the
monitored results; then the constant part of the exponential-tail
distribution is given by the formula:

mt = at - Nvr 5)
3.5 Estimating Parameters for Modeling Applications

Resource requirements for actual system processes are
needed for creating a realistic simulation model input, as well as
for validating the accuracy of simulation results. The UNIX
environment provides two sets of tools that are used for this
purpose: ADM, a system administration package, and VMSTAT,
a UNIX utility. ADM provides an accounting tool that tracks re-
source utilization for each process. This package provides a
number of useful accounting statistics. For our model we used
actual CPU requirements for a process (cpu-sec); time elapsed
while a process is active (realtime); and number of blocks trans-
ferred while a process is active (ioblks).

The I/O block count parameter could not be used directly
because UNIX transfers blocks only when the I/O buffer is full
or at the end of a fixed period. The ioblks parameter therefore
records the transfers that take place while the process is active,
not the transfers for which the process was specifically responsi-
ble. The ioblks parameter for a process was averaged over
several runs so that we could use an average transfer parameter
in our model.

The UNIX utility VMSTAT provides process count, paging,
and CPU utilization information for the system from the time it
was last booted or over a specified period. A 30-second period
was used with three parameters: Number of processes (procs);
Memory paging (paging), and CPU utilization (cpu) expressed
as a percentage of the elapsed time.

4. EXAMPLE APPLICATION

The initial application of the simulation model was a field-
based system for diagnosing electromechanical devices. This
type of system is of particular interest because processes invoke
other processes as a result of changes in the devices. The ability
to understand the capacity of the computer system hardware to
deal with the dynamic software demands of a diagnostic system
is crucial.

Because field-based diagnostic systems are typically dedi-
cated applications, the unused capacity of a system cannot be
absorbed by the addition of other, unrelated processes. Since
several of these systems are to be installed, simple overcapacity
design is not an economically feasible solution.

The recent growth in diagnostic system capability indicates
that upgraded functionality for systems already in the field must

B.K. Szymanski and S.H. Azzaro

be planned for. System simulation provides a reliable tool to
estimate the effect of proposed enhancements on overall system
performance prior to embarking on the expensive software
development process.

5. MODEL VALIDATION AND RESULTS

A 25 MHz CPU with 4 MB of memory was the target
machine for the first of two study cases. To validate the model,
components of the actual system were run and performance and
timing statistics were gathered using the accounting package
ACCTCOM and the VMSTAT utility. The timing statistics were
then used to estimate parameters of the model, and simulations
were run to obtain simulated performance data, including overall
system throughput and page faults. As can be seen from Fig-
ures 3 and 4, the average values and the general shape of
performance data for actual and simulated runs are very close.
Likewise, Figures 5 and 6 show close agreement on the actual
and simulated page faults. The agreement shown in these two
pairs of figures confirms the validity of the simulation model for
the application being considered.

The model parameters were extrapolated to an 8§ MHz CPU
by changing the CPU-speed parameter to reflect an environment
with one-third the CPU horsepower. A factor of 0.42 (rather than
0.34, which would be obtained from a CPU clock speed adjust-
ment) was used, based on equation 2.

The results shown in Figures 3 and 4 show generally con-
stant processing load with intermittent bursts of peak activity.
The peaks are characterized by three factors: height, which de-
fines the amount of a resource required (in this case the CPU);
duration, which indicates how long the processes required the
resource; and frequency, which indicates how often the resource
was required.

Our goal is to be able to model the height, duration, and fre-
quency of peaks accurately in order to provide the capability re-
quired to profile resource utilization and therefore estimate the
unused capacity in the system. To achieve this goal a close
match of the model results with reality is needed. Some portions

of the actual system are implemented as a sequence of calls to
UNIX utilities. As of this writing they are modeled as a single
process, which may account for the distorted shape of the peak
in Figure 3. The authors plan to extend the current model to
enable them to accurately address this issue by providing a
refined view of the software components of the modeled system,
including interaction with a database system.

Peak height can be traded off for peak duration by adjusting
CPU and disk parameters. For example, a slower disk will de-
crease the height because more processes will be waiting in the
disk queue, causing an increase in total running time. The result
is longer, flatter peaks. The frequency is dictated by the com-
plexity of the monitored electromechanical device. Simplifying
the computer view of the device will decrease the frequency of
the peaks brought on by running processes designed to analyze
external events.

6. DISCUSSION

Our experience shows that a dedicated system can be accu-
rately simulated for predicting performance and estimating usage
of resources. The model presented is a tool of universal applica-
tion that can easily be validated by comparing the results it
generates with reports produced by the UNIX system accounting
tool VMSTAT.

Our approach makes use of the UNIX accounting tools to
validate the model as well as determine simulation parameters.
First an initial set of parameters is obtained for each process in
the system under investigation; then these parameters are used
in a simulation run. The results of the simulation are compared
with the accounting output from the actual system. Once the
model is validated, it can be used for determining the effects of
changes in the hardware or software of the system.

During the course of this project, we learned that modeling
tools such as Extend can make the construction of the model
fairly straightforward. However, a thorough understanding of
what the system being simulated is doing, as well as how it
interacts with the operating system is required. For example, the

40 1

%

h-]

20 +

150

30 Second Interval

Figure 3. Comparison of Actual and Modeled CPU Utilization for a 25MHz CPU: Results Obtained Using VMSTAT
from a Run of the System Shown as Solid Lines, Modeled Results Shown As Dotted Lines

836

Simulating Dedicated Unix PC-Based Application Systems

%

coTO
8
|
T

30 +

N

20

10

0 50 100 150 200 250

30 Second Interval

Figure 4. Comparison of Actual and Modeled CPU Utilization for an 8MHz CPU: Results Obtained Using VMSTAT
from a Run of the System Shown as Solid Lines, Modeled Results Shown As Dotted Lines

500 T

400 —+

oQ o v

300

200

- —c o m

100

0 50 100 150 200 250

30 Second Interval

Figure 5. Comparison of Actual and Modeled Page Faults for a 25MHz CPU: Results Obtained Using VMSTAT from
a Run of the System Shown as Solid Lines, Modeled Results Shown As Dotted Lines

837

B.K. Szymanski and S.H. Azzaro

300
a 200
g
e
F
a
u
I 100 —
t
0 t t } f f f f t f }
0 50 100 150 200 250
30 Second Interval

Figure 6. Comparison of Actual and Modeled Page Faults for an 8MHz CPU: Results Obtained Using VMSTAT from
a Run of the System Shown as Solid Lines, Modeled Results Shown As Dotted Lines

issues of page faults and CPU normalization for wait states,
discussed in detail above, had a major effect on the accuracy of
the results.

Capturing I/O parameters in the UNIX environment was
particularly challenging because the system posts information to
the disk only when the I/O buffers are full or when a fixed time
period has elapsed. The accounting tools attribute all I/O activity
to the process that was running at the time it occurred. To
overcome this limitation, I/O activity was averaged over several
runs of the process.

Insights developed during this activity include understanding
how variation in the software process affects accurate simulation
of peak activity.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of William
Davidsen, Richard Pfeiffer, and Gary Livingston of the GE Cor-
porate Research and Development Center, whose UNIX expertise
and experience were invaluable on this project.

REFERENCES

Anderson, G.E. (1984), “The Coordinated Uses of Five Perfor-
mance Evaluation Methodologies,” Communications of the
ACM 27, 2,119-125.

Bard, Y. (1975), “Performance Analysis of a Virtual Memory,
Time Sharing System,” IBM System Journal 14, 4, 366-383.

Cohc_:Yn, J.W. (1982), Single Server Queue, North Holland, New

ork.

Extend [Manual] (1988), Imagine That, Inc., 7109 Via Carmela,
San Jose, CA.

Lazowska, E.D., J. Zahoran, G.S. Graham, and K.C. Sevick
(1984), Quantitative System Performance, Prentice-Hall,
Englewood Cliffs, NJ.

Lee,YA.i/I. (1966), Applied Queuing Theory, Macmillan, New

ork.

Lucas, Jr., H.C. (1975), “Performance Evaluation and Monitor-
ing.” In Software Systems Principles: A Survey, P. Freeman,
Ed., SRA, 509-524.

838

